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Archaeological material that we wish to analyse through formalised methods has to be described 
prior to analysis in a standardised, formalised way. We describe units in terms of variables. The 
units may be proper physical objects like pots, swords, axes, brooches, etc. or it may be 
assemblages of physical objects like graves, hoards, pits, or indeed any kind of excavation contexts. 
With reference to a modern object-oriented approach to the world we simply term all these kinds of 
units as objects. The variables can be any abstracted quality from the units like measurements, 
discrete descriptive elements or types of objects. 

Our formalised description is an abstraction from the archaeological material background. We 
analyse this abstraction in order to isolate meaningful structure that will provide us with means to 
understand and interpret the material background. There are many ways in which we may do 
formalised analyses of our description. Some are uni-variate in the sense that they focus on one 
variable at a time. Others are bi-variate, analysing variables pair wise. A third group is multivariate, 
analysing three or more variables together. This paper deals with three multivariate methods – 
Principal Components Analysis (PCA), Correspondence Analysis (CA) and Metric Scaling (MS). 
Apart from introducing and discussing the three types, a number of examples will be presented. The 
data for these can be found in the file Examples.xls. 

The central computational model for all three methods is the same. It is based on what is called 
a singular value decomposition of a matrix. The differences between the methods are based on the 
pre-treatment of the input data, as each method is aimed at data with particular statistical qualities. 
 
Principal components analysis 
The PCA method is designed to isolate patterns of covariance in a set of measurement variables, i.e. 
we expect the state of variables to be dependent on each other in some way. The state of one 
variable for an object has implications for the state of other variables for the same object. Our data 
could be a number of pots described by rim diameter, base diameter, shoulder diameter, total 
heights, etc. If we know the rim diameter of a pot we also know something about most other 
measurements of the pot. As a minimum, and quite trivial, the effect of general size will make most 
if not all measurements of big pots larger than those of small pots, but beyond size we may find 
more interesting patterns of covariance between the measurements. 

Crucial to PCA is the basis on which the variables are compared. This is determined trough a 
matrix of coefficients expressing the degree of covariance pair wise between all variables. There are 
two types of coefficients that may be used here. One is the covariance coefficient, and the other the 
correlation coefficient (Persons r). The result will normally differ between the two, and it is 
therefore necessary to understand the difference between them in order to decide when to choose 
the one or the other. 
 
Correspondence analysis 
Another typical set of data in archaeology is objects described by counts (including 
presence/absence) of some characteristic elements of the objects. It could be graves described in 
terms of their content of artefact types like different types of hair pins, brooches, belt buckles, 
weaponry, pottery, everyday utensils, etc. If in a grave, we find a typical female ornament like a 
hairpin it is quite likely that the same grave may contain another female ornament like a brooch, but 
quite unlikely that it will also contain a sword. In contrast if a grave contains a sword it is highly 
unlikely that it will also contain a hairpin or a brooch, but quite likely that it will contain a belt 
buckle. Covariance in type inventories due to sex is one of the most common structuring elements 



in graves. But there are certainly others like social ranking, and indeed chronological changes. 
Correspondence Analysis (CA) is a method designed to isolate patterns of covariance in a table of 
incident variables (presence/absence or counts) recorded for a number of objects. Such tables are 
also known as contingency tables.  

In order to investigate this type of data, correlation coefficients as used in PCA is of no use. The 
data are far from normally distributed. On the contrary they are heavily skewed to the left (i.e. 
towards small values) more or less following the Chi-Square distribution, and the Chi-Square 
statistic, ideally suited to deal with contingency tables, is in fact used in CA. The staring point of a 
CA is a table where each cell is computed as: 
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For each cell the observed value minus the expected value is divided by the squarer root of the 
expected value. Expected values are derived from the row and column sums of the table of observed 
values under the assumption of a random non-structured distribution of values across rows and 
columns. 
 
Metric scaling 
 
Scaling methods use similarity coefficients (or distance coefficients) as their starting point. A 
similarity coefficient is a numerical value that expresses the similarity between two objects. Mostly, 
similarity coefficients are structured in such a way that they attain the value of 1 if the objects are 
identical and the value of 0 if the objects have nothing in common. (Distance coefficients are in 
principle merely reciprocals of similarity coefficients).  

The advantage of similarity coefficients is that they can easily be constructed in such a way that 
information from variables on different types of scale can be combined. Thus it is possible to 
analyse measurement data together with counts from contingency tables. However, and this is a big 
disadvantage, when constructing the similarity coefficients the connection between objects and 
variables is broken. A coefficient is a general expression of similarity between two objects 
calculated from the state of their variables. Afterwards it is not possible to see the contribution of 
the individual variables, and these are completely left out of the analysis. 
 
The computational background to PCA, CA and MS 
It is quite difficult for a non mathematician to grasp the rationale behind the methods let alone the 
actual computations. The following is an attempt to make a very informal introduction to the three 
methods. The core of computation for all three is identical, but for clearness of presentation the 
following will be worded along the lines of a PCA. Later, when the three methods are exemplified, I 
will go into more detail with the characteristics of the individual methods and the differences in 
output they produce. If you wish to get a more appropriate introduction to these methods M.J. 
Baxter’s Exploratory Multivariate Analysis in Archaeology (1994) can be recommended. 

If you have two variables like Rim diameter and Neck diameter describing a series pots (objects) 
you may depict their interrelationship in a two dimensional plot with each set of linked observations 
of Rim diameter and Neck diameter shown as points. You will probably find that the points tend to 
form a linear configuration due to covariance between the two variables. This linear trend can be 
described with a line known as a regression line through the point scatter based on some criterion of 
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fit. This line can be seen as a one dimensional representation of information stemming from two 
dimensions. The representation will not be perfect of course. The points will be scattered to both 
sides of the line with varying distances known as residuals. 

A traditional regression line takes its starting point in one of the variables (the independent 
variable, by convention placed on the x axis) and use a criteria of fit based on the dependent 
variable (y axis) exclusively (fit is measured as distance from points to regression line parallel to the 
axis of the dependent variable). Thus the result will differ according to which variable is chosen as 
the independent. 

There is another regression method called orthogonal regression, where the variables are 
independent. Finding this regression line is based on a criterion of fit where the distance from the 
points to the regression line has to be measured perpendicular to this. The criterion is that the 
squared sum of distances from the points to the regression line is a minimum. It is obvious that 
finding the solution to this problem is not trivial as the criteria of fit is measured perpendicular to 
the line we seek, and it is hence impossible to set up a simple formula, because we do not know in 
which direction to measure. It can be shown, however, that the solution will be one of a simple 
rotation of the axes describing the two variables if their point of origin is shifted to the common 
centre of mean values. What is obtained are two new axes perpendicular to each other (exactly as 
the originals), where the first covers the maximum part of variation in the point scatter and the 
second the residuals.  

It is not difficult to imagine that the principle of orthogonal regression will work with three 
variables depicted in a three dimensional space as well. Following the orthogonal regression – 
rotation of the axes around the centre of mean values – the leading axis in the rotation will cover the 
maximum part of the variation of the three original variables. The second axis will cover the 
maximum part of the remaining variation, and the third axis the rest. In the process of orthogonal 
regression we aim to represent as much information as possible on the first axis, as much of the 
remainder information as possible on the next axis, etc. We call the leading axis in the rotation for 
the first Principal axis, the next for the second Principal axis, etc. 

Obviously, we are not satisfied with analysing just three variables together. However, bringing 
more than three variables into an analysis blocks our visual geometric understanding. We have to 
look at the problem arithmetically, which also of course is the way we have to deal with it 
computationally. 

If we go back to the two dimensional case it is fairly easy to see that the two new principal axes 
(call them P1 and P2) being a transform (rotation) of Rim diameter and Neck diameter must relate to 
these original variables in a unique way that can be described through simple linear equations. Thus 
the new axes or components as they are called, when we view the problem arithmetically, P1 and P2 
are constituted by linear combinations of Rim diameter and Neck diameter: 
  
P1 = a1 Rim diameter + a2 Neck diameter 
P2 = b1 Rim diameter + b2 Neck diameter 
 
where a1, a2, b1 and b2 are positive or negative values.  

Now if we have three variables like Rim diameter, Neck diameter and Shoulder diameter we 
will just have to add a new element to the equations and at the same time of course we get three 
principal components: 
 
P1 = a1 Rim diameter + a2 Neck diameter + a3 Shoulder diameter 
P2 = b1 Rim diameter + b2 Neck diameter + b3 Shoulder diameter 
P3 = c1 Rim diameter + c2 Neck diameter + c3 Shoulder diameter 
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When we view the problem in this manner there is obviously no limit to the number of variables we 
can include. We simply add a new principal component and a new element to each of the 
component equations. 

Still we have to find the values of a1, a2, a3 etc. and the problem does not become less by turning 
it from a geometrical problem into an arithmetical problem. The solution lies within matrix algebra 
and specifically with a unique factorisation of a matrix called singular value decomposition. The 
singular value decomposition of a matrix (table of input data in our case) can be shown to produce 
the components we look for. For an introduction to matrix algebra and singular value 
decomposition you should read Baxter 1994, Appendix B. 

There are different algorithms for performing singular value decomposition in a computer. The 
most economically of these in terms of speed and storage uses iterative procedures that gradually 
converge towards the desired result, and stop when a control value shows that the result obtained is 
satisfactory. Although generally very stable and reliable, it occasionally happens that convergence 
is not reached, and calculations have to stop without result. The algorithm used in CAPCA is one 
published by Wright in 1985.  

To gain further insight into this type of multivariate analysis and the kind of information it 
provides I will take the example with the pot diameters a little further. In doing so I will move 
directly into the realms of PCA, and part of what is said here will be repeated when we turn to the 
actual examples of this specific type of analysis. 

The new set of axes created by singular value decomposition is technically referred to as 
eigenvectors, but in connection with a PCA they are called principal components. The principal 
components are ranked in such a way that the first component covers the largest part of the total 
variation in the data set, the second component the second largest part, etc. They may be viewed as 
a new set of variables substituting the original ones, and in doing so they retain the total amount of 
variability in the data, but represent it in a different, more structured way. 

The values in front of each of the original variables in the equations of the principal components 
are called loadings. One of the things they show is how large a part of the variation of the original 
variables is represented in the new principal components. To see how, you should “read” vertically 
for each of the original variables. With reference to the equations below, for each of the original 
variables the sum of squared values will amount to 1 (= 100%) and the percentages of variation in 
Rim diameter that goes into P2 is thus the square of -0.26, which equals 0.07 (= 7%) 
 
P1 = 0,96 Rim diameter + 0,95 Neck diameter + 0,97 Shoulder diameter + 0,88 Height  
P2 = - 0,26 Rim diameter - 0,28 Neck diameter - 0,22 Shoulder diameter + 0,32 Height 
P3 = 0,11 Rim diameter + 0,02 Neck diameter + 0,00 Shoulder diameter - 0,34 Height 
P4 = - 0,05 Rim diameter - 0,03 Neck diameter + 0,11 Shoulder diameter - 0,02 Height 
 
Loadings have much the same qualities as correlation coefficients. Not only do they tell by their 
size (between 0 and 1) how strong the correlation is, but also by their sign whether it is a positive 
(when one grows the other grows as well) or negative (when one grows the other diminish) 
correlation. In the above example we find that all variables have a strong positive correlation with 
the first principal component (heights a little less than the diameters). For the second principal 
component on the other hand there is a weak negative correlation with the diameters and a weak 
positive correlation with heights. To help understand how the original variables are structured in 
relation to the principal components it is often a help to view the loadings in two way plots. 
If we take the sum of squared values for each principal component we get what is termed the 
eigenvalue of the component (also occasionally referred to as latent root). This can tell us how large 

 4



a part of the total variation a principal component represents. As the total variation of the example 
above is 4 (1 for each of the original variables) and the eigenvalue of P1 is 3.54 (sum of squared 
values) then P1 is accounting for 88% of the total variation. 

The values of the objects – here the individual pots – on the principal components are called 
Scores. They are calculated by substituting the variables in the equations with the actual values for 
the individual objects. The scores will consist of a blend of positive and negative values and will 
bear no resemblance to the input values. The main reason for this is that as a minimum all input 
values has been centred (by subtraction of their mean value) and most likely also standardised (by 
division with their variance or standard deviation). Otherwise they have not been altered. If you 
could make the mind experiment of plotting the pots in a four dimensional space of the original 
variables and then see them in the four dimensional space of the new principal components you 
would find that they would display the exact same spatial structure. Only the axes would be directed 
differently. 

As with the original variables, a meaningful way to view data is through two way plots of the 
principal components. The major difference, however, is that whereas you have to plot all original 
variables against one another to gain an overview, you only have to plot the first few components, 
and possibly only the first two to view the structure of the data. In the above example the two first 
principal components covers as much as 96% of the total variation indicating that the two last 
components are of no interest at all. The analysis has thus very effectively reduced the number of 
dimensions needed to give an adequate representation of the information. This capability of 
representing the important part of the variation in complex data sets by way of a few new principal 
components is the hallmark of this type of multivariate method. It makes it a very efficient tool to 
seek structure in data. 
 
PRINCIPAL COMPONENT ANALYSIS 
The optimal type of data for PCA is measurements of some kind. Other kinds of quantitative data 
can also be analysed including indexes and counts, but the latter type of data is far more suited for 
CA and should preferably be analysed through this. PCA is a classic, and as such it has been used 
intensively, and consequently often with little regard to the nature of the data analysed. It will 
probably help here if it is understood what happens to the data you input prior to analysis in PCA. If 
we return to what was said earlier about finding the orthogonal regression lines one change to the 
data is a must. For each variable we have to subtract the mean value from each value of the variable 
in order to centre the variable on its mean. Thereby we create a common centre through which all 
variable axes pass. The actual formula used is: 
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The division by the square root of the number of instances is a division by a constant, since it will 
be the same for all variables. It thus does not change the overall structure. If we exclusively use this 
kind of transformation to the data, the PCA will be based on what is known as a covariance matrix. 

We may, however, also choose to standardise data. Standardisation means that all variables 
apart from being centred also have unity dispersion. That is they have all a standard deviation of 1. 
To obtain this we use the following formula: 
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Using this standardisation we radically change the absolute size of values. They now are all more or 
less equal in weight, exactly as if we had done percentage calculations on counts. If we input data 
standardised in this way, the PCA will be based on what is known as a correlation matrix. 

The standard deviation and consequently the correlation coefficient can be considered correct 
only if the variables are reasonably normally distributed. Therefore we have to check the measures 
of skewness and kurtosis, both of which have to be not two far from zero. Any measure between 1 
and -1 are fine for our purpose and even a few positive or negative readings of 2 or 3 should not 
disturb us. However, if the absolute values become very high or if there are many between 1 and 3 
we should consider not using the correlation matrix. Before doing so we should check, however, if 
scale transformations of the variables can solve the problem. In CAPCA you can turn on automatic 
scale transformation, and using Log10, Ln or ArcSin transformations the skewness and kurtosis is 
normally reduced to acceptable levels. 

For a PCA, weighting of variables beyond that of standardisation should normally not be 
considered. Weighting of objects on the other hand is quite feasible and legitimate. A good case is 
seen below in the example of Neolithic pots. 

It is standard procedure to plot two variables against each other in order to evaluate the value 
distribution of the objects with respect to the two variables. It is obvious that we can do the same 
with principal components. Normally we will only make a plot of the first and second principal 
component against each other, and possibly the second against the third to see if interpretable 
information should exits on the latter. The plots can be looked upon exactly as plots of the original 
variables, but you won’t find any likeness between the values of the component axes and the values 
of the original variables. Neither do the sign of the values (negative or positive) mean anything by 
itself. In fact you will often see sign reversals in the output after even minor changes to the input (se 
the example on Neolithic pots below). 

The original variables cannot be plotted together with the objects (as it is possible with CA). 
You can however create a so called biplot of these variables as vectors in the n dimensional space 
created by the principal components. Normally you will only inspect the plot of variables against 
the two first principal components. Each variable will be represented by a point, but you should 
imagine lines (vectors) reaching from 0,0 in the plot to the points. This vector plot should be 
interpreted in terms of correlation/covariance. Vectors in the same direction has positive 
correlation/covariance, Vectors in opposite directions have negative correlation/covariance. Vectors 
perpendicular to each other have zero correlation/covariance. Long vectors have strong positive or 
negative correlation/covariance. Short vectors have small positive or negative 
correlation/covariance. 

The only connection between the objects and variable plots lies in the orientation defined by the 
principal components. Thus a variable vector stretching along, say the positive part of the first 
principal component, indicate that the objects lying in the same direction in the objects plot will 
have high values for this variable, while those lying in the opposite direction will have low values. 
 
Example using measures from 430 Iron Age lance heads 
To explore the difference of using PCA based on a covariance matrix and a correlation matrix, and 
to have a closer look at the information we receive from PCA we will look at an example with 
spearheads from the Iron Age votive bog finds from Illerup, Eastern Jutland, Denmark (Ilkjær 
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1990). The 430 spearheads are described by nine different measures (Ilkjær 1990: 30), and they all 
belong to three specific types (14, 15 and 18) defined in the publication based on selected criteria’s 
among these measures. Thus a PCA of all the measurement data ought to produce a result in 
accordance with the type division. 
We start out with a PCA based on a correlation matrix. As the variables become standardised 
through the standard deviation they should be as close to a normal distribution as possible. The 
function of automatic transformation in CAPCA has therefore been turned on. It investigates if a 
Log10 transformation, a Ln (natural logarithm) transformation or an Arc Sin transformation will 
provide better normality than untransformed data, and if so it will substitute the original data with 
the best transformation. Since all data are standardised such a transformation will not change the 
structure of the data. 
 

Skewness Kurtosis
Width of blade -0,36 0,31 No transformation
Thickness of blade -0,39 4,23 No transformation
Length of lance head -0,04 0,65 No transformation
Length of socket -0,01 1,98 No transformation
Length of blade 0,20 0,43 No transformation
Distance from socket to widest part of blade 0,09 -0,47 No transformation
Thicknes of lower part of socket -2,02 24,03 ArcSin transformed
Thickness of upper part of socket -0,99 13,80 ArcSin transformed
Width of socket 0,32 5,53 ArcSin transformed  

Skewness and kurtosis for values of nine 
measurement variables with values from 430 
spearheads.

 
Looking at Skewness and Kurtosis the main measurements – Width of blade, Length of lance head, 
Length of socket, Length of blade and Distance from socket to widest part of blade – are well 
behaved. The measurements Thickness of blade, Thickness of lower part of socket, Thickness of 
upper part of socket and Width of socket, which all have a very narrow measuring range, all have a 
high positive kurtosis indicating that their distributions are too high and narrow for normality.  
Three of them have been ArcSin transformed, but with little result. 

The correlation coefficient matrix is significant for understanding the result of PCA. It gives an 
immediate impression of which variables co-vary and whether the association is positive or 
negative. One way of using this matrix is to outline clusters of high positive or negative values by 
adding colours. Colouring important coefficients is an efficient way to outline the structure of co-
variation among the variables. In general the method does not work with a covariance matrix, 
because the size of the coefficients here varies with the absolute measuring range of the variables 
and because most variables tend to be positively correlated no matter what variation may be 
uncovered.  
 

 

Correlation coefficient matrix 
between nine measurement variables 
with values from 430 spearheads. 

 
Looking at the correlation matrix we find two distinct clusters of coefficients. The major (red) link 
together the main measurements with positive correlations. Thus there are high correlations 
between Length of lance head, Length of blade and Distance from socket to widest part of blade. 
Linked to this cluster are also Length of Socket and Thickness of blade. Another cluster (blue) with 
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internal positive correlation consists of Thickness of lower part of socket, Thickness of upper part of 
socket and Width of socket. There is a negative correlation between this cluster and the major one 
most clearly expressed by the correlation (green) between Width of socket on the one side and Width 
of blade and Distance from socket to widest part of blade on the other. Thus there seems to be a 
tendency that plump sockets go with slender and partly smaller blades and vice versa.  
 

1. Axis 2. Axis 3. Axis 4. Axis
EigenValues 4,67 2,10 0,99 0,60
Explanation % 51,85 23,30 10,95 6,64
Cumulative Explanation % 51,85 75,15 86,10 92,74  
 
Four principal components have been calculated, and looking at the Eigenvalues this appears to be 
enough to represent all important information. In fact the first two components cover 75% of all 
information, and it should be sufficient to study a graphical representation of these two axes to 
evaluate the result of the analysis. 
 

 

Biplot of variable 
loadings from a 
PCA based on 
correlation 
coefficients.   
Data consist of 
430 spearheads 
measured by nine 
variables. 

 
What can be inferred from the correlation matrix is clearly displayed in the variable plot. The main 
cluster of strongly correlated measures is seen to the right, and the cluster of socket thickness and 
width measures is seen to the left. The negative correlation between the two clusters is shown by 
their position on each side of 0 on the first principal component. On the second principal component 
there is a positive correlation between Width of socket, Length of Socket and Thickness of blade 
suggesting that these tend to vary together. In opposition lies Width of blade indicating that wide 
blades are generally thin and goes with short sockets. 
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Objects plot of 
a PCA based 
on correlation 
coefficients. 
Data consist of 
430 spearheads 
measured by 
nine variables. 

 
Looking at the objects plot we find that the three types are fairly well separated through the 
analysis. They were originally defined by setting hierarchical ordered thresholds for selected 
measures (Ilkjær 1990 p. 42, Abb. 28). The classification scheme is very complex and especially for 
type 14 difficult to follow. No less than four different sets of hierarchically organised criteria can 
lead to the type. Using the objects plot together with the variables plot we can provide a general 
characteristic of the three types. Type 14 tends to have relatively short, narrow but thick blades and 
long and plump sockets. Type 15 tends to have long wide blades with a fairly slender socket. Type 
18 tends to have short, relatively wide blades and a short plump socket.  

We will now rerun the analysis based on the covariance matrix instead of the correlation matrix. 
 
Covariance matrix
Width of blade 78,33
Thickness of blade 2,35 3,10
Length of lance head 442,56 80,47 7461,49
Length of socket 0,46 15,09 808,97 238,20
Length of blade 442,07 65,38 6652,08 570,88 6080,67
Distance from socket to widest part of blade 126,16 8,65 1224,11 41,49 1182,54 303,41
Thickness of lower part of socket 11,51 0,80 61,02 3,86 57,14 16,23 4,20
Thickness of upper part of socket 6,85 1,65 60,07 4,16 55,90 12,59 1,86 2,22
Width of socket 11,70 0,36 44,10 -6,03 50,12 17,35 2,48 1,57 3,05

Width of blade
Thickness of blade

Length of lance head

Length of socket

Length of blade
Distance from socket to widest part of blade

Thickness of lower part of socket

Thickness of upper part of socket

Width of socket

 

Covariance coefficient matrix 
between nine measurement variables 
with values from 430 spearheads. 

 
Looking at the covariance matrix we can immediately see that it differs a lot from the correlation 
matrix. In the diagonal cells, where, due to standardisation, the correlation matrix held 1’s, we find 
numbers that are an expression of the value range of the variables (actually the average squared 
distance of the individual values from the mean value of the variable). We can see that the size 
effect also affects the coefficients of the off diagonal cells. Thus cells combining Length of Blade 
and Length of lance head with other variables have considerably higher coefficients than any other 
cells. A coefficient, however, is not merely a reflection of the combined value ranges of two 
variables, as can easily bee seen from some of the smaller coefficients. We are dealing with a 
measure of covariance. Since no standardisation has taken place, however, the range of values that 
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the individual variables cover does influence the result of the analysis. If this turns out to be a 
problem you should use correlation coefficients. 
 

1. Axis 2. Axis 3. Axis 4. Axis
EigenValues 13498,33 316,19 49,58 16,98
Explanation % 97,20 2,28 0,36 0,12
Cumulative Explanation % 97,20 99,48 99,84 99,96  
 
If we look at the eigenvalues it is obvious that the size effect of value ranges has ended up on the 
first principal component. An explanation % of 97 compared to 52 with the analysis based on 
correlation coefficients says it all. In this case we cannot use the eigenvalues to decide how many 
components we need to cover the important information. As we shall see the second component 
holds a lot of important information. 
 

 

Biplot of variable 
loadings from a 
PCA based on 
covariance 
coefficients.   
Data consist of 
430 spearheads 
measured by nine 
variables. 

 
The first thing to note is that the two marked clusters of variables we found in the first analysis at 
each end of the first component are gone. Instead the first component presents a fairly direct 
reflection of the size of the value ranges of variables with the two really big ones far to the right. In 
accordance with what usually happens, when size plays a role, all variables are positively 
correlated. As for the second principal component we find Length of socket negatively correlated 
with Width of blade and Distance from socket to widest part of blade exactly as in the first analysis, 
but in this case Length of lance head and Length of blade follow this split as well. 
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Objects plot of 
a PCA based 
on covariance 
coefficients. 
Data consist of 
430 spearheads 
measured by 
nine variables. 

 
The surprise comes with the plot of objects. It is a far better result than the one obtained with the 
correlation matrix. Not only are the groupings more distinct, but there are no longer apparent 
“misclassifications” (e.g. objects classified as type 15 lying among objects of type 18). Why is this 
so? One obvious explanation is that the standardisation taking place in the first analysis gives too 
much influence to unimportant variables like the various sickness measures. Incidentally, these are 
also the variables that are far from normality, and thus not suited for a PCA based on correlation 
coefficients. To test this I have run two new analyses where Thickness of lower part of socket, 
Thickness of upper part of socket, Thickness of blade and Width of socket have been excluded.  

The analysis using the covariance matrix shows no changes at all in the objects plot and the only 
change in the variables plot is that the four excluded variables have disappeared. The analysis using 
the correlation matrix, however, changes a lot. The plot of the objects looks as follows: 
 

 

Objects plot of 
a PCA based 
on correlation 
coefficients. 
Data consist of 
430 spearheads 
measured by 
five variables. 
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The separation of groups is now very good and there is hardly any overlap between types. It looks 
very much like the plot from the analysis of the covariance matrix, but it is clearly not identical. It is 
difficult to say which we should prefer. 

This example clearly demonstrates the differences and problems with the two input types. 
Correlation matrix input is the “cleaner” in the sense that you have a more orderly universe of 
correlation coefficients, sensible eigenvalues and a variable plot that does not get swamped by the 
size effect of the variables. To use it, however, you have to be certain that you do not include 
variables that hold nonessential information, variables that just provide random noise or variables 
that are far from normality. Through the standardisation process all variables become of equal 
importance. The best you can do is to use both of the methods, experiment with them and compare 
the results. In this way you will also learn something about your variables. 
 
Example using measurement data on 66 Early Neolithic pots 
The data for this example is taken from Koch 1998. In this study a total of 153 complete Funnel 
beakers were measured and drawn, and the profiles were subsequently scaled to the same height and 
visually compared (Koch 1998 p. 67 ff). Based on this comparison nine different shape modes were 
separated covering the whole of the Early Neolithic and the first half of the Middle Neolithic. Many 
of the shape modes are very close to each other, but characteristic types of decorations help to 
separate them. A PCA on all pots shows a confusing, mixed spread of pots from various shape 
groups. It is however possible to see that there is a pattern among the early shape groups and the 
later shape groups isolated. This was why PCA’s for the early and the late material originally were 
run separately (Koch 1998 p.71 ff.), and why the material selected here for the example only 
comprises 66 pot of shape groups 0, 1, 2 and 3. 
 

 
 
The original measurements were taken as coordinates to characteristic points of the pot profile 
following the scheme shown above to the left. For this example these coordinates have been 
recalculated into a number of characteristic measurements as shown above to the right. Apart from 
making it easier to interpret the variable patterns in the analysis, this kind of measurement scheme 
also makes it possible to include fragmented material, say the neck part of pots, and then only 
analyse the neck variables. 
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The characteristic measurements calculated are all in mm and should be directly comparable. There 
are, however, considerable differences between the measuring span of the variables. Especially the 
curvature measurements and neck base width are numerically small and with a limited span. It is 
clearly to be expected that a PCA based on the correlation matrix will be distorted by the variation 
in these variables unless they co-vary very systematically with some of the larger variables. It is 
therefore the obvious choice to start out with a PCA based on the covariance matrix. 
 
Covariance matrix
Base width 2,35
Belly height 5,49 18,73
Belly width 2,25 8,41 5,41
Belly curvature 0,31 1,34 0,84 0,15
Shoulder heigth 1,44 3,55 2,14 0,34 1,89
Shoulder width 0,36 0,75 0,62 0,09 0,57 0,25
Shoulder curvature 0,00 -0,02 0,02 0,00 0,02 0,02 0,00
Neck base heigth 0,34 0,38 1,08 0,12 0,31 0,21 0,03 1,22
Neck base width 0,07 0,11 0,17 0,02 0,07 0,04 0,00 0,18 0,04
Neck height 1,57 4,31 2,94 0,43 1,69 0,56 0,03 0,63 0,13 2,58
Neck width 0,61 2,28 1,15 0,19 0,48 0,08 0,00 -0,07 0,00 0,73 0,48
Neck curvature 0,04 0,17 0,11 0,02 0,04 0,01 0,00 0,02 0,00 0,08 0,03 0,01

Base width

Belly height

Belly width

Belly curvature

Shoulder heigth

Shoulder width

Shoulder curvature

Neck base heigth

Neck base width

Neck height

Neck width

Neck curvature  

Covariance matrix between 12 
measurement variables based 
on data from 66 pots. The 
variables are not weighted. 

 
Looking at the covariance matrix we find, as in the previous example, that the size of the 
coefficients in the diagonal cells quite clearly reflects the span of the variables. It is not as marked 
as with lance heads, but looking at the rest of the coefficients, seeing that very few are negative and 
larger values primarily occur where variables with bigger spans combine, we can clearly expect the 
variable plot to sort the variables according to size of value span. 
 

 

Biplot of variable 
loadings from a 
PCA based on 
covariance 
coefficients.   
Data consist of 66 
pots measured by 
12 variables. The 
variables are not 
weighted. 

 
This is also what happens. Indeed, if you compare the size of the coefficients on the diagonal with 
the placement of the variables along the first principal component of the variable plot, you will find 
that Belly height, which has the highest value, lies to the right, and Shoulder curvature, which has 
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the smallest value, lies to the left. The rest are spread in between in rank order of size with a 
distance between them that reflects their approximate size difference.  
 

 

Objects plot of 
a PCA based 
on covariance 
coefficients. 
Data consist of 
66 pots 
measured by 12 
variables. The 
variables are 
not weighted. 

 
When we look at the object plot we find that types 1, 2 and 3 are separated, but only in the second 
principal component and not the first, where you would expect the major separation to occur. In 
stead pots from all three types are strewn out along the component. The reason becomes 
immediately obvious, when you check the information on the individual pots. Those furthest to the 
right are the biggest pots and those furthest to the left are the smallest ones. The first principal 
component simply sorts the pots according to size.  

This size sorting happens very often in a PCA if the magnitude of the variable values depends 
on the size of the objects. It did not happen with the lance heads because size itself in this case 
seems to be a constituting element in the types, but with ceramic pots it is an entirely different 
matter. The shape of a pot is more or les independent of its size. Pots with the same shape can easily 
be made in very differing sizes depending on functional needs. The problem with the size element 
in a PCA arises because the measurements taken to outline the shape of the pots at the same time 
are measurements of size. 

To avoid size sorting in the first principal component you have either to devise some size 
independent measures - indexes and angles (creating a variety of other problems), or much better 
create a weighting factor for the objects that removes the size factor. One obvious solution with pots 
would be to use the volume as a weighting factor (1 divided with the cube root of volume would be 
an appropriate weighting factor). Much simpler and just as efficient is a factor for each object based 
on the sum of all measurements for the object. This would be useable for analyses of both complete 
pots and analyses of parts of pots, where the volume information for the part analysed may not be 
available. The weighting factor used in the following is (10/sum of measurements) for each pot. In 
CAPCA weights have to lie between 1 and 0. The factor 10 is here chosen because it nicely 
balances the weights within this interval. Anyway, you will have to choose a factor that is equal to 
or smaller than the smallest sum. Otherwise you will get weights larger than 1. 
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Objects plot of a 
PCA based on 
covariance 
coefficients. Data 
consist of 66 pots 
measured by 12 
variables. The 
variables are 
weighted to 
eliminate size as a 
discriminating 
factor. 

 
Clearly the use of weights to eliminate the effects of size on objects work. The first principal 
component now shows variations in shape separating Type 1, 2 and 3. There are no distinct 
groupings, however. Rather a continuous development is suggested, which would be in agreement 
with a claimed typological development from Type 1 to Type 3 held by some scholars. The position 
of Type 0, claimed to be the oldest type, begs for an archaeological explanation, however. 

The next step is to run a PCA based on the correlation matrix using the same weights. 
 

 

Objects plot of a 
PCA based on 
correlation 
coefficients. Data 
consist of 66 pots 
measured by 12 
variables. The 
variables are 
weighted to 
eliminate size as a 
discriminating 
factor. 
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The result shows the same general trend as that of the covariance matrix with type 1 at one end type 
2 in the centre and type 3 at the other end of the first principal component. However, there are also 
differences. Type 0 now seems more adjacent to Type 1 and there is a tendency for a break in the 
middle between Type 1 and type 2 and 3. This would tend to be in line with the suggestions by 
other scholars, who claim that there is a major difference between type 1 and its cultural milieu on 
the one hand and type 2 and 3 and their cultural milieu on the other. 
 

 

Biplot of variable 
loadings from a PCA 
based on correlation 
coefficients.   
Data consist of 66 pots 
measured by 12 
variables. The 
variables are weighted 
to eliminate size as a 
discriminating factor. 

 
If we look at the variable plot we can see that there is an opposition on the first principal component 
between Belly height, Neck width, Belly curvature and Belly width to the left and Shoulder width, 
Shoulder height, Neck height and Neck base width to the right. It is clearly these variables that 
condition the potential bipartition of the pots. In the middle are four variables that do little to this 
division except possibly confuse it. Potentially it could give a clearer picture if we left out Base 
width, Shoulder curvature, Neck curvature and Neck base height. 
 

 

Objects plot of a 
PCA based on 
correlation 
coefficients. Data 
consist of 66 pots 
measured by 8 
variables. The 
variables are 
weighted to 
eliminate size as a 
discriminating 
factor. 
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The break between the two groupings has become slightly more accentuated, but overall the picture 
has not changed, and the four excluded variables had thus no significant influence on the result. If 
we turn to the statistics and the variable plot we may try to interpret the result a little closer. 
 

 

Correlation matrix between 8 
measurement variables with data 
from 66 pots. The variables are 
weighted to eliminate size as a 
discriminating factor. 

The variables are generally well behaved with respect to Skewness and Kurtosis. The correlation 
coefficients are not particular high, and their patterning can be a little difficult to see at first, but 
there are two groups of variables with mutual positive correlation. The one consist of Belly height, 
Belly width, Belly curvature and partly Neck width (red), the other of Shoulder height, Shoulder 
width, Neck base width and Neck height (blue). The coefficients between members from these two 
groups show marked negative correlation (green). Clearly this pattern lies behind the splitting of the 
pots in two groups. How it does can best be seen from the variables plot. 
 

 

Biplot of variable 
loadings from a 
PCA based on 
correlation 
coefficients.   
Data consist of 66 
pots measured by 8 
variables. The 
variables are 
weighted to 
eliminate size as a 
discriminating 
factor. 

 
In the variables plot the first group (red) lies to the right on the first principal component, which is 
the side where Type 0 and Type 1 pots are placed in the objects plot. The other group (blue) lies to 
the left on the first principal component, which is the side where Type 2 and Type 3 pots are placed 
in objects plot. The negative correlation between members of the two groups is reflected in their 
position on both sides of zero. An interpretation in general terms would be that Type 0 and 1 pots 
have a high and wide, curved belly, a small insignificant shoulder and a low, flaring (wide) neck. 
Type 2 and 3 pots on the other hand have a low and not very wide belly, a pronounced shoulder and 
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a generally high, non-flaring neck with a clear tendency for a narrowing of the lower part. If we 
focus on the second principal component, we find from the objects plot that Type 2 pots lies on the 
negative side of the component and Type 3 pots lie on the positive side. Judging from the variables 
plot we can suggest that Type 3 pots have generally higher necks than Type 2, whereas Type 2 pots 
have generally more pronounced shoulders than Type 3. The high position on the second principal 
component of Belly width and Belly curvature probably reflects that the small group of Type 3 pots 
and one Type 2 pot that separates themselves in the top centre of the objects plot has fairly wide and 
curved bellies. 

In this example the PCA on a correlation matrix came out just as good as or better than the one 
on the covariance matrix. The reason must be that in this case the variables with a very small value 
span are just as meaningful and informative as those with a large value span. They do not become 
noise emitters when normalised. There is thus no way in which we can decide in advance if we 
should choose a covariance or a correlation matrix. We have to argue from the nature of the 
variables combined with results of actual analyses, which one we should prefer. 
 
CORRESPONDENCE ANALYSIS 
Correspondence Analysis takes counts rather than measures as input. Counts are by definition 
positive integers with zero being the state of no occurrence. When counts are presented in a table 
we call this a contingency table. The first thing to note about a contingency table is that by 
definition all entries are on the same scale (counts are counts), which means that in contrast to 
measurement data we can perform calculations across both variables and objects, and not just across 
the variables. Thus creating sums of counts on objects across variables (row sums) is just as 
meaningful as creating sums of counts on variables across objects (column sums). 

To work with a contingency table we need to have a notion of what constitute structure in the 
table, and by the same token how lack of structure should be defined. The row and column sums in 
a way defines the basic content of the table, and we can claim that the content of a table is 
unstructured if the individual cell values is a mere random reflection of the row and column sum 
values. This so called randomized table or table of expected values can simply be obtained for each 
cell by multiplying the corresponding row sum and column sum and divide the result with the total 
number of counts in the table. 

The structure of contingency tables can then be seen as deviations between observed and 
expected cell values. The actual measure used is calculated as ((observed cell value - expected cell 
value) / square root of expected cell value). This is in fact equal to the terms used in chi-square 
tests. 

When performing an orthogonal regression on this table it will be the patterns of deviation 
above and below the expected values that will form the covariance patterns leading to the separation 
of a set of new axes. This new set of axes created by orthogonal regression is referred to as 
principal axes (rather than principal components to avoid confusion with PCA). The principal axes 
are ranked in such a way that the first axis has the largest representation of the total variation in the 
data set, the second axis the second largest part, etc. They may be viewed as a new set of variables 
substituting the original variables, and in doing so they retain the total amount of variability in the 
data, but represent it in a different more structured way. 

As in PCA we can speak of loadings and scores, but it is problematic to do so. First of all it is 
not constant in CA what should technically be considered variables and objects. This is an 
important difference to PCA where variables are treated differently than objects. In CA there is no 
difference and the smallest dimension of the dataset is computationally considered to be the 
variables. Secondly because of the equality, or symmetry if you wish, of variables and objects, 
loadings (and scores) are not scaled in the same way as in PCA, and there is thus no direct 
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equivalence with correlation coefficients. Consequently, it is confusing to speak of loadings and 
scores. Because they are scaled equally, to allow them to be plotted together in one diagram, it is 
customary to speak of variable coordinates and object coordinates in stead. 

As in PCA an eigen value is associated with each principal axes, but the explanation of the 
value is not as straight forward as with PCA. The total sum of eigen values, which in CA is called 
the inertia of the data set, is not equal to the number of variables, but usually much smaller due to 
scaling. The part of the total inertia represented by the eigen values of each principal axis does, 
however, show the part of the total variation covered by the individual axes exactly as in PCA. 

There are no immediate concerns before running a CA. Just press the button to run the analysis. 
Understanding the result, however, is not straight forward, and in many aspects it can become more 
complicated than with a PCA. Indeed you may have to run a lot more analyses, where you step by 
step alter the input. The alterations to the input may consist of weighting of objects and/or variables 
and of omission of either objects or variables. To decide what to do, calls for an understanding of 
the output in both graphical and numerical format.  

The first thing to emphasize, as already stated, is that variables and objects can be presented 
together in the coordinate system formed by the principal axes. Further in doing so the position of 
the variables in the plot is directly interpretable in relation to the objects and vice versa. We can 
visually inspect and interpret variables and objects in one single plot. To gain a better understanding 
of visual interpretation we will look at a few artificial examples with idealised matrixes. We start 
out with the matrix below, where the cells on each side of the diagonal filled is with 1’s, and the rest 
is filled with 0’s (blanks are always 0 in a CA). 
 

 

Idealised 20 by 20 matrix 
with two independent sets 
of objects and variables. 
Within each set the 
objects and variables are 
linked together in a chain 
of shifting objects and 
variables. 

 
This matrix is quite interesting as the two rows of 1’s form a peculiar pattern of what goes with 
what. Object U8 is linked with object U10 through variable V9, and object U9 is linked with objects 
U11 through variable V10. Objects U8 and U10, however, are not linked with U9 and U11 in any 
way. Nor are variable V9 and Variable V10 linked to each other in any way. This pattern continues 
throughout the matrix dividing objects and variables in two sets with the same number of objects 
and variables in each set. There is no connection between the two sets, but within each set there is a 
systematic relationship between objects and variables as each object is linked to the next object 
through one variable and each variable is linked to the next variable through one object. The 
graphical representation of this is shown in the following plot of the first two principal axes. 
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CA of an idealised 20 by 
20 matrix with two 
independent sets of 
objects and variables. 
Within each set the 
objects and variables are 
linked together in a chain 
of shifting objects and 
variables. Combined plot 
of 1. and 2. principal 
axis. 

 
We find that the two sets are placed at each end of the first principal axes reflecting the lack of 
connection between them. Within each set there is a very systematic layout that reflects that each 
object is linked by exactly one variable to the next object, and that each variable is linked by exactly 
one object to the next variable. All together they form a chain of shifting objects and variables that 
is laid out as a straight line on the second Principal Axis with a constant distance between objects 
and variables (except for the edge effects of the matrix). You can interpret this layout directly in 
simple terms of closeness between objects and variables as reflected by their combinations. 
 

 

Idealised 20 by 20 matrix 
with objects and 
variables that are linked 
together in one chain of 
shifting objects and 
variables. 

 
Now let us try to see what happens when we fill the diagonal and the cells adjacent to the diagonal 
to one side with 1’s, while the rest of the matrix is filled with 0’s. We see that V9 is linked to U9, 
which is linked V10, which is linked to U10, which is linked to V11, which is linked U11, etc. Thus 
all objects and variables form a single chain with shifting objects and variables. This results in the 
following plot. 
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CA of an idealised 20 by 
20 matrix with objects 
and variables that are 
linked together in one 
chain of shifting objects 
and variables. Combined 
plot of 1. and 2. principal  
axis. 

 
The arc shaped layout is characteristic for data with a pattern of continuity between objects and 
variables. That is when you move across the objects there is a gradual and systematic replacement 
of variables and vice versa. This is also the criteria for seriation, and the perfect arc shaped layout 
indicates that the data meets the criteria for at perfect seriation. Again we see the equally spaced 
objects and variables as would be expected from their systematically chained relationship. Why it 
shows up as an arc may not seem evident. It has to do with multidimensionality, though. The plot 
you see is two dimensional, but you must not think of it as two dimensional. It is a line that passes 
through multidimensional space, and the arced layout is a result of a projection into two 
dimensions. It is much like looking at the maps of international flight destinations that you find in 
the flight magazines of any plane. They all form arcs, not because the planes fly a detour, but 
because the shortest route around the globe appears as a curved line on the two-dimensional 
projection of a map. The objective here, however, is not the shortest line, but a line along which the 
objects and variables are evenly and maximally spread. On the first and second axis this is not the 
case. The distribution is denser in the middle and towards the end. If you include the third axis 
(below) you can see why. Over three axes we are not speaking of an arc, but a spiral.  
 

 

CA of an idealised 20 by 
20 matrix with objects 
and variables that are 
linked together in one 
chain of shifting objects 
and variables. Combined 
plot of 2. and 3. principal 
axis. 
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You can find a very detailed discussion of the behaviour of different types of continuity patterns in 
data sets that can be seriated in Jensen & Nielsen 1997. 

V1 and U20 marks the ends of the chain being linked in one direction only. What will happen if 
we link the two together by inserting 1 in the cell that combines V1 and U20, and hence create a 
continuous circular chain? 
 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
U1 1 1
U2 1 1
U3 1 1
U4 1 1
U5 1 1
U6 1 1
U7 1 1
U8 1 1
U9 1 1
U10 1 1
U11 1 1
U12 1 1
U13 1 1
U14 1 1
U15 1 1
U16 1 1
U17 1 1
U18 1 1
U19 1 1
U20 1 1

 

Idealised 20 by 20 matrix 
with objects and 
variables that are linked 
together in one chain of 
shifting objects and 
variables, and where the 
ends of the chain have 
been “fused” together. 

 
Logically the result should be a circle, and it is. 
 

 

CA of idealised 20 by 20 
matrix with objects and 
variables that are linked 
together in one chain of 
shifting objects and 
variables, and where the 
ends of the chain have 
been “fused” together. 
Combined plot of 1. and 
2. principal axis. 

 
Now what happens if we break the chain by setting 0 between U19 and V19, and thus isolating 
U19, U20 and V20? 
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
U1 1 1
U2 1 1
U3 1 1
U4 1 1
U5 1 1
U6 1 1
U7 1 1
U8 1 1
U9 1 1
U10 1 1
U11 1 1
U12 1 1
U13 1 1
U14 1 1
U15 1 1
U16 1 1
U17 1 1
U18 1 1
U19 1
U20 1

 

Idealised 20 by 20 matrix 
with objects and 
variables that are linked 
together in one chain of 
shifting objects and 
variables, apart from two 
objects and one variable 
that has been isolated 
through a break in the 
chain. 

 
We find that U19, U20 and V20 are placed together in one corner, while the remainders, still 
forming a chain, are placed in the opposite corner as a slightly curved line. U19, U20 and V19 are 
what are referred to as outliers – objects or variables that either, as in this example, is more or less 
uncorrelated with the rest of the material, or displays excessive values that set them apart from the 
rest of the material. The latter situation occurs only in connection with counts of numerous 
occurrences, and will be dealt with in the examples below. 
 

 

CA of idealised 20 by 20 
matrix with objects and 
variables that are linked 
together in one chain of 
shifting objects and 
variables, apart from two 
objects and one variable 
that has been isolated 
through a break in the 
chain. Combined plot of 
1. and 2. principal axis. 

 
To handle outliers there are only two possibilities: either you remove them from the analysis or you 
use weights to change their behaviour. With the outlier example above, where a complete break in 
continuity of the material exists, removal is the only option. You simply note that U19, U20 and 
V19 are not related to the rest of the material in any way, and then remove them. In other situations 
you can either remove or use weights. Weighting is an essential part of CA’s, but you have to 
carefully consider when and how to use it. In connection with the examples below weighting will be 
discussed in more detail. 
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Finally, what will happen if we introduce objects and variables with a constant appearance 
throughout the data? In the following variable V10 appears in all objects, and object U10 scores on 
all variables. 
 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
U1 1 1 1
U2 1 1 1
U3 1 1 1
U4 1 1 1
U5 1 1 1
U6 1 1 1
U7 1 1 1
U8 1 1 1
U9 1 1
U10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
U11 1 1 1
U12 1 1 1
U13 1 1 1
U14 1 1 1
U15 1 1 1
U16 1 1 1
U17 1 1 1
U18 1 1 1
U19 1 1 1
U20 1 1

 

Idealised 20 by 20 matrix 
with objects and 
variables that are linked 
together in one chain of 
shifting objects and 
variables, apart from one 
object that appear with 
all variables and one 
variable that appear in 
all objects, and thus acts 
as constants. 

 
The result is that V10 and U10 are placed together in the centre of the plot with the remaining 
objects and variables stretched out in arcs on both sides of the centre. The seriation totally collapses, 
and had it not been for the very systematic distribution along the diagonal, the objects and variables 
would merely have formed a loosely clustered group around the centre. You should be very wary of 
variables with a constant appearance in your data. Constant variables can ruin the result of any CA, 
whether you are looking for a seriation, clusters, or any other form of structure. In CAPCA you can 
use the information on the sheet Matrix output to track them down. A constant variable is one that 
has a high frequency of non zero cells in connection with presence absence data (look at the table 
Data as analysed) and one that has a uniform value profile across many objects in connection with 
counts (look at the table Data sorted by rank on first principal axis). 
 

 

CA of idealised 20 by 20 
matrix with objects and 
variables that are linked 
together in one chain of 
shifting objects and 
variables, apart from one 
object that appear with 
all variables and one 
variable that appear in 
all objects, and thus acts 
as constants. Combined 
plot of 1. and 2. principal 
axis. 
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Example using counts of technical elements on rim shards from pottery 
The material used in this example is adopted from Madsen & Petersen 1984. It is counts of 10 
different technical elements in the decoration on rims of Early Neolithic pottery from 34 settlement 
sites. The size of the sites, or rather the extent of the excavations, varies considerably, and the 
number of decorated rim shards for each site varies accordingly. Thus the largest site has 304 
decorated shards, the smallest six.  

The sites can be classified according to their regional and chronological groupings using 
traditional typo-chronological criteria. This has led to a division into three partly regional EN I 
groups and one EN II group. 

 

CA of the occurrence 
of ten different 
technical rim 
decoration elements in 
34 settlements. Objects 
and variables are not 
weighted. Combined 
plot of 1. and 2. 
principal axis. 

 
Looking at a first plot of objects and variables together, we can see that the four different groups 
have been separated, at least partially. It can immediately be seen that there is a tendency for 
outliers in the lower left and right hand corners. However, before attending to these we should set a 
standard for the objects. There are seven sites that have less than ten counts of elements. We 
exclude these from the analysis as too uncertain. Then there are six sites with more than 100 counts 
of elements. To avoid that these by sheer number becomes too influential we weight them down to a 
sum of 100, in reality changing their counts to percentages. 

With the renewed analysis we find (below) that the change does not make much difference to 
the layout (except that the values on the second principal axis have been mirrored), but we are now 
certain that the sites are as comparable as we can make them. We could of course set the minimum 
sum higher, but that would quickly cut down the number of sites in the analysis and make it of little 
use.  
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CA of the occurrence of ten 
different technical rim 
decoration elements in 27 
settlements. Objects with 
sums larger than 100 are 
weighted down to 100. 
Variables are not weighted. 
Combined plot of 1. and 2. 
principal axis. 

CA of the occurrence of ten 
different technical rim 
decoration elements in 27 
settlements. Objects with 
sums larger than 100 are 
weighted down to 100. 
Variables are not weighted. 
Combined plot of 1. and 2. 
principal axis. 

 
We can now return to the problem with outliers.  
 

 

CA of the 
occurrence of ten 
different technical 
rim decoration 
elements in 27 
settlements. Objects 
with sums larger 
than 100 are 
weighted down to 
100. Variables are 
not weighted. 
Combined plot of 1. 
and 2. principal axis 
showing size of 
inertia. 

 
If we create a plot showing the inertia of objects and variables we can locat the objects and 
variables that exert the greatest influence on the result. In the upper right hand corner there is one 
site (Bistoft) and one variable (Furrows) isolated from all other object and variables with very high 
inertia percentages. In the upper left hand corner there is a similar combination of an object 
(Bønnerup) and one variable (Broad Stab-and-drag) with high inertia percentages. An inspection of 
the input data reveals that 74% of the technical elements at Bistoft are Furrows, which by itself is a 
fairly common element on many sites. Further, 87% of all Broad stab-and-drag elements are found 
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at Bønnerup, a site that contains a wide variety of other elements. Clearly, the site of Bistoft, and the 
variable Broad stab-and-drag are extreme outliers in the analysis and they should be removed. 
There are other variables with an inertia that should be dampened. In the following, apart from 
removing the site of Bistoft and the variable Broad stab and drag, the variables, Whipped cord, 
Twisted cord, Ordinary stab-and-drag and Furrows have been weighted with 0.7, 0.2, 0.7 and 0.8 
respectively. This has been done experimentally to land their inertia on a not too high level 
compared to the other variables. 
 

 

CA of the occurrence of 
ten different technical 
rim decoration elements 
in 27 settlements. Objects 
with sums larger than 
100 are weighted down to 
100. Variables have been 
individually weighted. 
Combined plot of 1. and 
2. principal axis showing 
size of inertia. 

 
The exclusion of a site and a variable, and the selective weighting of variables have created a 
somewhat clearer result with a better separation of the individual groups. However, there are clearly 
problems with some sites (the three at the bottom centre of the plot), and after removing sites with a 
sum of less than 10 there are hardly any Oxie group sites left. Thus we may conclude that although 
the technical elements used in rim decorations appear to be a strong indicator for the chronological 
and cultural division of Early Neolithic pottery it is not by itself a sufficient discriminator. 
 
Example of flint distribution in relation to Linear Band Ceramic houses 
The material for this example is adopted from de Grooth 1987. It consists of counts of various types 
of worked flint from rubbish pits associated with houses from the Linear Band Ceramic culture 
(LBK) site of Elsloo. The material was expected to be able to reveal different potential modes of 
production. Basically domestic mode of production on the one hand and Lineage mode of 
production and/or Loose mode of production (ad hoc specialisation) on the other hand. The first 
would result in a uniform distribution of leftovers from production in all houses. The latter would 
result in a bipartition of houses into production and consumption units. As the different modes of 
production are not mutually exclusive a clear patterning cannot be expected, and only by using 
multivariate methods can patterns be uncovered (de Grooth 1987: 38). 

A PCA was applied to the data, but no clear results were obtained, and none that related to the 
modes of production. In fact “rather unexpectedly, the only way to make sense of the two first 
P(rincipal)C(omponent)’s was to interpret them in chronological and technological terms. As time 
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went on, fewer preparation pieces were needed to prepare cores that yielded a higher proportion of 
blades” (de Grooth 1987: 42). 

PCA is not the correct method to use on contingency data, however. CA can be expected to 
perform much better, which will be demonstrated in the following. The material consists of counts 
of 19 categories of worked flint from 72 house units. The sum of counts for both flint categories and 
house units vary considerably. For the former the maximum sum is 3081, while the minimum sum 
is 1. For the latter the maximum sum is 762 and the minimum sum is 5. It was decided to leave out 
houses with a sum less than 20 and flint categories with a sum less than 15 to reduce the likelihood 
of a random effect. This leaves us with 49 houses and 15 categories of worked flint. The houses can 
be dated within a six phase chronology based on pottery. For this example it is sufficient, however, 
to split them into a group of houses dating to the older LBK and a group of hoses dating to the 
younger LBK. The 15 categories of worked flint used can be divided into a group of categories 
indicating production and a group of categories indicating consumption. The former group consists 
of Blocks, Cores, Flakes, Rejuvenation pieces, Preparation Pieces, Hammer stones and Hammer 
stone fragments. The latter group consists of Blades, Side retouched blades, Sickle blades, End 
scrapers, Arrow heads, Borers, Side scrapers and Splintered pieces. 
 

 

CA of the occurrence of 
15 categories of worked 
flint in 49 house units. 
Objects with sums larger 
than 100 are weighted 
down to 100. Variables 
are not weighted. 
Combined plot of 1. and 
2. principal axis.

 
The result of the analysis is clear and directly interpretable along the lines that de Grooth had 
envisaged. There is a tight group of consumption categories in the right part of the plot and a 
somewhat more dispersed group of production categories to the left and around the centre of the 
plot. This bipartition clearly indicate that different modes of production are indeed imbedded in the 
material. Only two assumed consumption categories break the pattern by lying to the left and 
bottom of the plot. Splintered pieces may not belong to the consumption category as I have 
assumed, and Side scrapers seems to be a tool that mostly belongs to the older LBK, and hence may 
be caught up in the chronological pattern. 

The houses have an even distribution with most of them lying around the production categories, 
and considerably fewer around the consumption categories. The really surprising fact is that all 
houses from the older LBK lies around the production categories, while the houses from the 
younger LBK are evenly distributed around both groups. The interpretation seems fairly clear. 
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During the older LBK the domestic mode of production prevailed, and if other modes existed they 
were not sufficiently developed to pattern the material. During the younger LBK other modes of 
production broke through (whether lineage mode or loose mode), and house holds are now either 
producers and consumers or primarily consumers.  

 
Example of female graves from the Germanic Iron Age on the isle of Bornholm 
The data for this example is adopted from Nielsen 1988, which was one of the very first studies 
showing the capabilities of CA for chronological studies, demonstrating how, in connection with 
perfect continuity in a set of data, the graphical presentation would form an arced hyperbolic layout. 
Here the analysis is merely presented with a few comments. 
 

 
 
The data consist of counts of various types of personal ornaments in female graves. As can be seen 
from the plot there is a high degree of continuity in the material, where the individual ornament 
types occurs in a fairly limited number of graves, and where each grave have a limited number of 
ornaments. Further, there are no breaks in the sequence leaving us with a perfect seriation that can 
be interpreted chronologically. The tendency for clustering along the hyperbolic layout may either 
indicate an uneven temporal occurrence of graves in the material, or it may be the result of an 
uneven temporal development in the type of ornaments used. 

Clearly, the layout can be described through a second degree polynomial. In the above plot 
separate trend lines for objects and variables have been added. In CAPCA this can easily be done in 
the plots, when objects and variables are shown without a classification. Just activate the series of 
object, right click and choose add trend line and make sure that the type is set to polynomial. Then 
repeat the process with the variables. When adding the trend line you can also specify to have its 
equation shown as well as the squared value of Pearson’s correlation coefficient. For a good 
seriation you should expect this value to be very high. No rules can be give, but I would expect it 
always to be higher than 0.9. Further in a good seriation you should expect the two trend lines to be 
almost identical. 
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To most archaeologists a seriation is equivalent to an ordered matrix, where values are 
concentrated along the diagonal. Such a sorting can of course be done from the CA result. In 
CAPCA a sorted matrix is always shown on the sheet Matrix output when you run a CA. This is 
irrespective of whether the CA produce a seriation or not, and you should always decide from the 
CA plots, whether you have a seriation or not, before you turn to the sorted matrix. Never judge a 
seriation from the sorted matrix! 
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e1
Lillevang 9 2 1
Lousgård 2 2 1
Lousgård 2 2 1
Lillevang-M 2 1
Nr.Sandegå 2 1
Kobbeå 20 1 1
Lillevang 1 1 1
Bækkegård 15 1 1 1
Lousgård 47 1 2 1 1
Saltuna 14 1 2 2 2
Lillevang-Melsted 1 1 2
Lillevang-Melsted 4 1 1 1 1
Bækkegård 105 1 1 1 1
Lillevang 2 1 1 1 1
Gudhjem 1 1
Ellegård 2 1 2 1
Lousgård 12 1 1 1 2 1
Bækkegård 153 1 2 1 1 1
Bækkegård 132 1 1
Bækkegård 44 1 2 1 1
Bækkegård 59 1 2 1
Bækkegård 66 1 1 1
Lousgård 6 1 1 1
Lousgård 11 2 1
Lousgård 3 2 1
Nr.Sandegård 6 2 1
Bækkegård 143 1 1 1
St.Kannikegård 195 1 1
Bækkegård 3 1 1 1
Bækkegård 5 1 2 1
Bækkegård 77 1 1 2 1 1
Bækkegård 50 1 1 2
Bækkegård 76 1 1 1  
 
The sorting of objects and variables in CAPCA is based on the coordinates of the first principal 
axis. This is common practice, and presently the only viable approach to an automated sorting. It is 
not the optimal solution. The sorting order should follow the polynomial trend line rather than the 
first axis. For a good seriation this would yield a more or less identical result with the one obtained 
from the first axis, but where objects and variables are more widely distributed on both sides of the 
trend line, the sorting order can vary considerably. Automated sorting by way of the trend line, 
however, awaits a suitable algorithm. 
 
METRIC SCALING 
 
Measures of similarity and distance 
The development and use of similarity and distance coefficients took place in the biological and 
ecological sciences in the 1950’es and 60’es. A central publication was “Principles of Numerical 
Taxonomy” (Sokal & Sneath 1963), which also had an impact on archaeology through David 
Clarkes “Analytical Archaeology” (1968). 

The concept of similarity is one we all share, but it is certainly not a precise and well defined 
concept. In every day life we often state that something is similar or dissimilar, but if questioned as 
to why we will often find it difficult to give a precise answer. The problem is that we cannot really 
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speak of similarity unless we also state in terms of what. Even when we intuitively speak of 
similarity between objects we do so based on abstractions from the objects of characteristics that we 
feel are important. We may not realise what these characteristics are, and if questioned we may be 
at a loss to explain. Others may not find the same similarity because they focus on other 
characteristics. 

To use the concept of similarity in science we have to define what similarity is and how we 
measure it. It is agreed that a statement of similarity between objects is based on a predefined list of 
elements/traits/characters – whatever the name used – through which the comparison is made. It is 
obvious that similarity becomes a matter of the predefined list. In the heydays of positivism this 
indicated that if only we could set up a thorough list of elements we could reach an objective 
statement of similarity. This is obviously not so. Many different lists of elements can be set up 
reflecting current understanding and goals. Each will result in different statements of similarity. 
However, given a particular list of elements and given a particular way of measuring similarity 
based on this list we can get consistent and repeatable expressions of similarity between objects. 

A variety of measures of similarity have been suggested and used over the years. Most measures 
result in coefficients of similarity ranging between 1 and 0, the former for perfect agreement, the 
latter for no agreement whatever. The measure used in CAPCA is adopted from J.C. Gower (1971). 
This is a generally approved measure that elegantly combines elements from three types of 
variables. The three types separated are: dichotomous, qualitative and quantitative. A dichotomous 
variable holds one element which must be either absent or present for an object. A qualitative 
variable has two or more alternative elements. Only one element can be recorded for an object and 
the object must always display one of the alternatives. A quantitative variable has a set of numeric 
values with an inherit order. It may be measurements, counts or even numbers representing an 
ordinal scale. 

When comparing two objects across all their variables two “counters” are used called Scores 
and Validity. Whenever a valid comparison between two variables is made Validity is incremented 
with 1, while Scores is incremented with a value between 0 and 1 depending on the outcome of the 
comparison. 

For dichotomous variables Scores is incremented with 1 if both objects show presence and is 
not incremented if one object shows presence and the other shows absence. If both objects show 
absence the comparison is not seen as valid and neither Scores nor Validity are incremented. For 
qualitative variables Scores is incremented with 1 if both objects display the same element and is 
not incremented if they differ. For qualitative variables Scores is incremented with a value 
calculated as 1-|xi – xj|/r where xi and xj represent the values of the variable for the two objects and r 
denotes the total range of values in the variable. 

Gowers coefficient is the only coefficient supported in CAPCA if the input data consist of 
objects and variables as recorded. However, it is also possible to input matrices of coefficients 
directly, but then you have to compute the coefficients yourself in advance. These matrices of 
coefficients may contain either similarity coefficients or distance coefficients, the latter in principle 
being just a reciprocal expression of similarity.  
 
Example of distances between Central European capitals 
In connection with most roadmaps you will find a table of distances between cities. The following 
example was drawn from a standard road atlas of Europe. Ten capitals have been extracted from the 
table, all of them lying within mainland Central Europe. Thus you don’t have to cross the sea to go 
from on capital to another, and none of the capitals lies on peninsulas restricting the driving access. 
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Amsterdam 0 668 211 1411 908 383 501 855 1226 1152
Berlin 668 0 777 859 1079 766 1052 343 595 625
Brussel 211 777 0 1367 714 215 309 891 1335 1108
Budapest 1411 859 1367 0 1284 1190 1494 517 669 247
Genève 908 1079 714 1284 0 508 503 922 1559 1025
Luxembourg 383 766 215 1190 508 0 355 725 1287 930
Paris 501 1052 309 1494 503 355 0 1030 1611 1234
Praha 855 343 891 517 922 725 1030 0 614 283
Warszawa 1226 595 1335 669 1559 1287 1611 614 0 695
Wien 1152 625 1108 247 1025 930 1234 283 695 0  

Distance matrix 
between 10 Central 
European capitals. The 
distances are 
kilometres. 

 
The input matrix is a straight forward distance matrix with zero values on the diagonal and 
distances in km in the cells combining various capitals. 
 

 

Metric scaling of 
distance matrix 
between 10 Central 
European capitals. 
Note that the “map” is 
mirrored. 

 
The result of the metric scaling of the distance matrix is a fairly precise representation of the 
position of the capitals in relation to each other. You can reassure yourself of this from any map of 
Europe, but you have to do a little mental mirroring of the map. East has become west and vice 
versa. Obviously there is no way that the program can know what is left and right or up and down. 
It is simply a scaling presented in two dimensions from some distance measures. If you want to 
compare it to the real world, you have to do a bit of mirroring yourself, and perhaps even rotating. 
 
Example using measurement and rim decoration data on 66 early Neolithic pots 
This material is the same as was used in a PCA example above, but in addition to the measurements 
used, a recording of decoration elements is added by way of Gowers general coefficient of 
similarity. First, however, an analysis exclusively based on the measurement data is made to enable 
a comparison between PCA and MS. 
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Metric scaling of 
66 Neolithic pots 
based on a 
comparison of 12 
measurements. 

 
The measurements used are in the weighted version that brought the best results with the PCA. It 
can immediately be seen that the result of the MS is markedly inferior to the result from PCA. 
There is a tendency for a separation of type 1 on the one hand and type 2 and 3 on the other, but that 
is just about all. In the PCA we actually had a clear separation of type 0 and type 1 on the one hand 
and type 2 and type 3 on the other, and a partial separation of the two latter types, all fully in line 
with what we would expect archaeologically. Why things do not work out in MS is difficult to 
evaluate, not least because we totally loose the connection to the individual variables in the process 
of creating the similarity coefficients. In my opinion, however, a coefficient of similarity is too 
simple a way to express the relations between objects. 

The main reason to use MS is the possibility to combine continuous variables with categorical 
variables. Unfortunately, the pots in question are not highly decorated, in fact the majority have 
only a rim decoration, if any decoration at all. Further, the rim decoration is quite simple, displaying 
only horizontal lines or rows. Basically, we are limited to record 11 different technical elements 
used in the rim decoration. Technical elements, however, can be considered to be very decisive in 
the Early Neolithic pottery as one of the CA examples above shows. 
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Metric scaling of 
66 Neolithic pots 
based on a 
comparison of 12 
measurements 
and 11 technical 
elements in rim 
decoration. 

 
The MS of measurement and decoration data together is not satisfactory either. Clearly, there is an 
improvement in the separation of type 1 from the others, but there are no significant changes within 
the remaining material. The use of MS in this case is simply not satisfactory.  It remains to be seen 
whether this is a reflection of a general weakness in the approach compared to PCA/CA, or if there 
are situations, where better results can be obtained by MS than by combining your way with PCA 
and CA. Personally, I am rather sceptical. 
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